

Data-Driven Prognostics Methods and Performance Evaluation

Abhinav Saxena and Kai Goebel Prognostics Center of Excellence, NASA ARC

Motivation

Develop data-driven algorithms for prognostics and demonstrate their applicability on diverse applications to benchmark prognostic performance.

- Evaluate different algorithms for their suitability for various applications
- Assess trade-offs that arise from
 - Amount of data needed
 - Computational complexity
 - Robustness towards input space perturbations
 - Ability to support uncertainty management
 - Accuracy and usability of predictions (prediction horizon)
- Develop performance evaluation metrics for prognostics

Overview

Forecasting Applications End-of-Life predictions Future behavior predictions A prediction threshold exists Non-monotonic models Use monotonic decay models No thresholds Continuous predictions RUL **Event predictions** Prediction Weather, Finance Trajectory Decay predictions Discrete predictions Prediction Economics, Supply Chain Model-based + No/Little history data Data-driven Qualitative Aerospace, Nuclear Increasing or Statistics can History data decreasing trends be applied Nominal & failure data Quantitative Medicine, Mechanical **Predict** systems, structures numerical values

Algorithms should be developed to cater to specific prediction tasks

Nominal data only

Electronics, Aerospace

Software Demonstration

 Interactive software environment allows visual assessment in addition to numerical performance tracking.

Features

- Runs multiple prediction algorithms
- Tracks and compares prediction performance simultaneously
- Computes performance metrics

Algorithms

Gaussian Process Regression

Relevance Vector Machines

- Supervised learning algorithm using expectation maximization
- Stochastic sparse kernel method similar to Support Vector Machines
- Allows probabilistic outputs in a Bayesian framework

-Likelihood of the data set

Design matrix (kernel functions)
$$p(\mathbf{t} \mid \mathbf{w}, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \|\mathbf{t} - \Phi \mathbf{w}\|^2\right\}$$

-Predictions for the new observations x^*

$$p(\mathbf{t}^* | \mathbf{t}) = \int p(\mathbf{t}^* | \mathbf{w}, \sigma_{MP}^2) p(\mathbf{w} | \mathbf{t}, \eta_{MP}, \sigma_{MP}^2) d\mathbf{w}.$$

Supervised learning belonging to the family of least squares estimation algorithms

- Bayesian framework to derive posteriors from priors (history data)
- Provides mean and variance estimates for the predictions

-Prior

$$\begin{bmatrix} y \\ f_{test} \end{bmatrix} \sim N \left[0, \begin{bmatrix} K(X, X) + \sigma_n^2 & K(X, X_{test}) \\ K(X_{test}, X) & K(X_{test}, X_{test}) \end{bmatrix} \right]$$

-Posterior

$$f_{test} | X, y, X_{test} \sim N(\bar{f}_{test}, \text{cov}(f_{test})), \text{ where}$$

$$\bar{f}_{test} \equiv \text{E}[f_{test} | X, y, X_{test}] = K(X, X_{test})[K(X, X) + \sigma_n^2 I]^{-1} y,$$

$$\text{cov}(f_{test}) = K(X_{test}, X_{test}) - K(X_{test}, X) + \sigma_n^2 I]^{-1} K(X, X_{test}).$$

Artificial Neural Networks

- Universal function approximators
- Widely used for data-driven learning, i.e. provide a well represented prognostic technique, e.g. DWNN, CPNN
- Do not incorporate uncertainty management inherently

Polynomial Regression

A simple regression approach, here used as baseline for comparisons

for comparisons

Performance Evaluation

Key Issues

- Performance evaluation is key for prognostics technology maturation and deployment
 - A stringent performance evaluation is needed before prognostics can be used in critical fielded applications
 - –e.g. a maintainer must trust a prediction before scheduling maintenance
 - -Metrics help establish design requirements
 - Allow comparing different algorithms to establish application specific suitability
 - -Provide feedback to help improve algorithms
- Lack of standardized methods for prognostic performance evaluation calls for new metrics customized for Prognostic Health Management scenarios
 - Need a better account of uncertainty management
 - Performance should improve as end-of-life approaches
 - Traditional metrics based on accuracy, precision, and robustness should be extended to suit prognostics

- Approach
 - A variety of metrics are under investigation and being used to evaluate different data-driven algorithms
 - New metrics are being developed and evaluated

Metrics can be classified under several categories

Metrics

- A variety of performance metrics developed specifically for prognostics
 - -New metrics track performance dynamics
 - Metrics like α - λ accuracy, convergence, relative accuracy, and prediction horizon are introduced

- A diverse set of prognostics applications are being used for benchmarking
 - NASA prognostics repository hosts variety of data sets with run-to-failure characteristics
 - http://ti.arc.nasa.gov/project/prognostic-data-repository/
- Data sets include mechanical, electrical, electronics, and aerospace systems